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Abstract

We construct optimal designs to minimize the maximum variance of the �tted response over
an arbitrary compact region. An algorithm is proposed for �nding such optimal minimax designs
for the simple linear regression model with heteroscedastic errors. This algorithm always �nds
the optimal design in a few simple steps. For more complex models where there is a symmetric
error variance structure, we suggest a strategy to help �nd some hitherto elusive optimal minimax
designs. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the problem of �nding an optimal design to estimate the response sur-
face of an experiment over an arbitrary region Y when there is heteroscedasticity in the
model. The optimality criterion is to minimize the maximum variance of the estimated
response surface over Y . Motivation for these problems can be found in Ehrenfeld
(1955), Elfving (1958), Kiefer and Wolfowitz (1964a, b, 1965), Gaylor and Sweeny
(1965), Wong and Cook (1993), and Wong (1993). In addition, these types of designs
are useful for two other reasons: (i) they can be motivated from the cost perspectives,
Pazman (1986, p. 36) and (ii) these designs are related to multiple-objectives optimal
design problems, Cook and Fedorov (1995). The latter set of researchers showed that
solving a multiple-objective design problem invariably requires solving a sub-minimax
problem similar to those discussed here.
The veri�cation of these optimal designs and other types of optimal minimax designs

generally involves �nding a maximin measure �∗, see Atkinson and Fedorov (1975a,
b), Fedorov and Khabarov (1986), and Cook and Fedorov (1995). However, despite
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its ubiquity, very little is known about this measure �∗, except that an e�ective way
of determining �∗ will help considerably in �nding the optimal minimax design.
In this paper, we provide an e�cient algorithm for �nding optimal minimax designs

for the simple linear model, and elicit a property of �∗ useful for �nding optimal de-
signs in more complex models. Algorithms are useful because they can be implemented
in computers and generate the optimal designs for practitioners. The assumptions in
this work are that both the design space X and the region Y are known and com-
pact and the model is linear. The variance of the response at the point x is described
by a positive function �(x) which is frequently called the e�ciency function. Follow-
ing previous work, (Lim and Studden, 1988; Lau, 1988; Dette, 1990, 1992; DasGupta
et al., 1992; Wong, 1993, 1994), we shall assume �(x) is known up to a multiplicative
constant. This is not an unrealistic assumption especially if one relates �(x) to the cost
incurred in taking an observation at the point x (Pazman, 1986, p. 36). All observations
are uncorrelated.
Designs are treated as probability measures on the design space X and so they are

approximate designs in the sense of Kiefer and Wolfowitz (1964a, b). Thus, a probabil-
ity measure with mass mi at the point xi ∈X is a design which takes Nmi observations
at xi; i = 1; 2; : : : ; k, and N is the number of observations for the experiment.
Following convention (Kiefer and Wolfowitz, 1964a, b), the usefulness of a design

� on X is measured by its information matrix,

M (�) =
∫
x
�(x)f(x)f>(x)�(dx);

where the coordinates of f(x) are a basis for the set of regression functions. Our
design criterion is to �nd a design �∗ among all designs on X to minimize, for some
given set Y ,

�d(�) = max
x∈Y

d(x; �);

where d(x; �)=f>(x)M−1(�)f(x) is the variance (apart from a constant) of the �tted
response at the point x using design �. Gaylor and Sweeny (1965) found optimal
designs for the simple linear model when X = Y and �(x) is constant, i.e. errors
are homoscedastic. As we will show in the next two sections, optimal designs for
heteroscedastic models need not include the extreme points of the design space as
their support points and consequently the design problem is more complicated.
When X =Y , these optimal designs are called heteroscedastic G-optimal designs and

have been studied in Wong and Cook (1993) and Wong (1993). For convenience, we
will abbreviate them as simply G-optimal designs. It was shown there that one may
verify if a design �∗ is G-optimal by �rst letting A(�) = {a∈X |d(a; �) = �d(�)} and
then checking that there exists a probability measure �∗ de�ned on A(�∗) such that

g�(x; �
∗; �∗) =

∫
A(�∗)

�(x){f>(x)M−1(�∗)f(a)}2�∗(da)

− �d(�∗)60 for all x∈X (1.1)
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with equality at the support points of �∗. This approach is generally labor intensive
largely because there is no e�cient way of �nding �∗.
In Section 2, we propose an algorithm for generating these optimal designs for

the simple linear model. Justi�cations for this algorithm are given in Section 3, and
in Section 4, as illustrations, we provide optimal designs found from our algorithm.
Section 5 studies properties of �∗ in (1.1) and suggests a strategy for �nding G-optimal
designs for polynomials of higher degrees.

2. An algorithm for optimal minimax designs in the simple linear model

We provide here an algorithm for the simple linear model, which avoids the problem
of having to �nd �∗ in (1.1). Here f>(x) = (1; x). We temporarily assume X = Y =
[− 1; 1] and defer the more general case to the end of this section. Since our criterion
is strictly convex on the space of information matrices, we can con�ne our search for
the optimal design �∗ to 2- or 3-point designs by the second part of Caratheodory’s
Theorem (Pazman, 1986, p. 57). In addition, for simple linear regression, the variance
function d(x; �∗) is a quadratic in x and so it is maximized at one of 3 possible sets in
X : (i) A(�∗) = {1}, (ii) A(�∗) = {−1} and (iii) A(�∗) = {−1; 1}. These correspond to
o�-diagonal elements of M (�∗) (i.e. {M (�∗)}12) as being negative, positive or zero,
respectively.
A salient feature of our algorithm is that it always �nds the optimal design in 2 or

3 steps. At each stage of the algorithm, a set of support points is hypothesized and
the mass at each support point of the optimal design is found (Theorems 3.1 and 3.2).
Afterwards, the maximum of the variance function is expressed as a function of the
support points and minimized by solving the derivative of �d(�∗) for the points in X .
Alternatively, a numerical search routine such as the Newton–Raphson method could
be used for this last step.
We introduce a bit more notation for the rest of the paper. The value of �(x) at

the point xi ∈X is denoted by �i and the design with mass �i at xi; i = 1; 2; : : : ; k,
is denoted by �. When x1; : : : ; xk are known, it is sometimes convenient to view �
as a k × 1 vector with elements �1; : : : ; �k . In all cases, k = 2 or 3. In addition, let
v>i =(−xi; 1); i=1; 2; and let {t}i denote the ith element in the vector t. The algorithm
proceeds as follows:
Step A1: Hypothesize a two-point support set S2 = {x1; x2} with −16x1¡x261.

Use the algebraic formulae in Theorem 3.1 to calculate the optimal design �∗ and the
corresponding value �d(�∗).
Step A2: Minimize �d(�∗) over all two point sets S2.
Step B1: Hypothesize a three-point support set S3 = {x1; x2; x3} with −16x1¡x2¡

x361. If x260, set zi = xi and �̃(zi) = �(zi); i = 1; 2; 3; otherwise, set zi =−x4−i and
�̃(zi) = �(z4−i); i = 1; 2; 3.

De�ne n1 =
�̃1�̃3(z3 − z1)− �̃1�̃2(z2 − z1)− �̃2�̃3(z3 − z2)

z3�̃3 − z2�̃2
;
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n2 =
�̃1�̃3(z3 − z1)(−z1z3) + �̃1�̃2(z2 − z1)(z1z2) + �̃2�̃3(z3 − z2)(z2z3)

z3�̃3 − z2�̃2
;

� =

{
�̃2�̃3(z3 − z2)
z3�̃3 − z2�̃2

(
√
|n2|+ z2z3

√
|n1|)

}
={n2

√
|n1| − n1

√
|n2|}

and

�1 = �; �2 =
z3�̃3 − �(z3�̃3 − z1�̃1)

z3�̃3 − z2�̃2
and �3 =

−z2�̃2 + �(z2�̃2 − z1�̃1)
z3�̃3 − z2�̃2

:

Step B2: If n1n2¡0 and 0¡�¡�max = z3�̃3={z3�̃3 − z1�̃1}, set �∗i = �i; i=1; 2; 3, if
x260; otherwise set �∗i = �4−i ; i = 1; 2; 3.
Step B3: If n1n2¿0 or �60 or �¿z3�̃3={z3�̃3 − z1�̃1}, stop. (The optimal design

supported on X will actually be a two point design and hence will have already been
included in Steps A1 and A2.)
Step B4: Minimize �d(�∗) over all three point sets satisfying the conditions in

Step B2.
Step C: Steps A2 and B4 will produce the optimal 2- and 3-point designs, respec-

tively. The optimal design is the one with the smaller value of �d(�∗).
The above results can be generalized to the case when X 6= Y . It appears that only

Kiefer and Wolfowitz (1964a, b) and, Gaylor and Sweeny (1965) had investigated this
problem when the model is homoscedastic; no work is available for the heteroscedastic
case. The �rst set of researchers focused on the case when X =[−1; 1] and Y =[−a; a]
and a is either very large or very small, while the latter set of researchers obtained
optimal designs for the simple linear model when X is �xed and Y is an arbitrary
compact set. It is not hard to see our argument in Section 3 can be readily applied
to any compact sets X and Y . For the simple linear heteroscedastic model, it can be
shown that if X = [z1; z2] and Y = [y1; y2], and the variance function of the two-point
design � on Y is maximized only at y2, the mass of the optimal two-point design at
the larger support point x2 is

�2 =

√
�1(y2 − z1)√

�1(y2 − z1) +
√
�2|y2 − z2|

: (2.1)

When �(x) is a constant and X =[0; 1], we have A(�)={y2} if y1¿1 for any design �
supported on {0; 1}. The optimal design is supported at 0 and 1 with mass at 1 equals
to y2=(y2 + |y2 − 1|) = y2=(2y2 − 1). This is a more compact expression than the one
given in (15) of Gaylor and Sweeny (1965). Other formulas can be similarly deduced,
but are omitted for space consideration.

3. Justication for the algorithm

In this section, we provide justi�cation for the algorithm proposed in Section 2 when
X = Y = [− 1; 1]. We begin with Theorem 3.1 which gives the mass distribution of a
two-point optimal design if the support points are known.
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Theorem 3.1. Let � be the optimal design among those supported on two given points
x1 and x2 with −16x1¡x261. Then

(i) A(�) = {1} if and only if �2 =
√
�1(1− x1)√

�1(1− x1) +
√
�2(1− x2)

; (3.1)

(ii) A(�) = {−1} if and only if �2 =
√
�1(1 + x1)√

�1(1 + x1) +
√
�2(1 + x2)

;

(iii) A(�) = {−1; 1} if and only if (i) and (ii) fail and

�2 =
−�1x1

�2x2 − �1x1 with x1¡0¡x2: (3.2)

Proof. (i) Let � be a design with mass �i and xi, i = 1; 2. In order that A(�) = {1}
holds, �2 must be the unique solution to

@
@�2

d(1; �)|�2=�2 = 0 (3.3)

for any two-point design � with mass �i on xi, i = 1; 2. Since d(1; �) is convex, dif-
ferentiable for �2 ∈ (0; 1), (3.3) has at most one solution. Furthermore, max{d(1; �);
d(−1; �)} tends to in�nity as �2 tends to 0 or 1; thus any G-optimal design �∗ with
A(�∗) = {1} must satisfy (3.3). Let mij denote the (i; j)th element of M (�). Straight-
forward algebra shows the left-hand side of Eq. (3.3) is proportional to

f>(1)L{�2f(x2)f>(x2)− �1f(x1)f>(x1)}Lf(1)
and

L=

(
m22 −m12

−m12 m11

)
:

Thus (3.3) is equivalent to

�2f>(1)Lf(x2)f>(x2)Lf(1) = �1f>(1)Lf(x1)f>(x1)Lf(1)

and has a solution which must satisfy either√
�2f>(1)Lf(x2) =

√
�1f>(1)Lf(x1) or

√
�2f>(1)Lf(x2)

=−
√
�1f>(1)Lf(x1): (3.4)

But L =
∑2

i=1 �i�iviv
>
i with v>i f(xj) 6= 0 for i 6= j and v>1 f(x2) = −v>2 f(x1). Thus,

(3.4) simpli�es to
√
�1(1−�2)(1− x1)=±√

�2�2(x2− 1). Since 1− xi¿0, i=1; 2 and
1− x1¿0, only the right-hand side of Eq. (3.4) can have a solution and this is given
by (3.1).
(ii) The proof for this case is entirely similar to (i), and is omitted.
(iii) Clearly, A(�)= {−1; 1} if and only if the o�-diagonal elements of M (�) are 0,

which is true if and only if �2 is given in (3.2). The desired conclusion follows.
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The next result decribes a relationship between A(�∗) and the number of support
points of the optimal design �∗. It implies that if a three-point optimal design �∗

exists, then A(�∗) = {−1; 1} and M (�∗) is diagonal.

Lemma 3.1. Let �∗ be an optimal design supported on at most 3 points which satis�es
A(�∗) = {1} (A(�∗) = {−1}). Then either �∗ is actually supported on two points
or there exists a design �∗∗ supported on two points such that d(1; �∗) = d(1; �∗∗)
(d(−1; �∗) = d(−1; �∗∗)) and A(�∗∗) = {1} (A(�∗∗) = {−1}).

Proof. Let −16x1¡x2¡x361 be 3 potential support points of a design � with mass
�i at xi, i = 1; 2; 3. Since M (�) is continuous, convex and continuously di�erentiable
on �, any three-point optimal design �∗ satisfying A(�∗) = {1} must satisfy

d(1; �∗) = inf
(�1 ;�2 ;�3)∈�

d(1; �): (3.5)

Here � is the simplex {(�1; �2; �3)∈R3 |�1 + �2 + �3 = 1 and �i¿0, i = 1; 2; 3}.
Note that d(1; �) = f>(1)[

∑3
i=1 �i�if(xi)f

>(xi)]−1f(1) and its gradient ∇d(1; �)
has components given by

@
@�i
d(1; �) =−�if>(1)M−1(�)f(xi)f>(xi)M−1(�)f(1)

=−�i(f>(xi)M−1(�)f(1))2:

Since |M (�)|¿0, we have M−1(�)=
∑3

i=1 �i�iviv
>
i =|M (�)| and |M (�)|f>(xi)M−1(�)

f(1) = {K�}i, where

K =




0 �2(1− x2)(x1 − x2) �3(1− x3)(x1 − x3)
�1(1− x1)(x2 − x1) 0 �3(1− x3)(x2 − x3)
�1(1− x1)(x3 − x1) �2(1− x2)(x3 − x2) 0


 :

Now, let w be any direction within the simplex �, i.e. w>1 = 0. Then

d
dz
d(1; �+ zw)|z=0 = w>∇d(1; �) =

3∑
i=1
�i{K�}2i wi=|M (�)|2: (3.6)

Clearly, (3.5) yields that w>1 = 0 implies that w>∇d(1; �∗) = 0 since the optimal
design �∗ is in the relative interior of � so that w>1 = 0 implies �∗ + zw is in �
for su�ciently small z. This can equivalently be expressed as �i{K�∗}2i = h for some
non-negative h, i = 1; 2; 3. This can then be expressed in matrix terminology as

D1=2K�∗ ˙ 1; (3.7)

where D=diag(�1; �2; �3). Note that D1=2K�∗ 6= 0 since all elements in the �rst row of
K are non-positive and �∗i ¿0, i=1; 2; 3. Hence (3.7) implies that the column space of
D1=2K contains the vector (1; 1; 1)>. Let w> = (x3 − x2; x1 − x3; x2 − x1) and note that
(w>D−1=2) (D1=2K) = w>K = 0. Hence D1=2K is of rank at most 2. Inspection shows
that K has rank at least 2 and so rank(D1=2K) = 2.
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It follows that there must be a vector 
, say, linearly independent of �∗ such that
D1=2K
 = 0. If 
>1 6= 0, set 
∗ = �∗ − 
=(
>1); otherwise set 
∗ = 
. Then 1>
∗ = 0
and D1=2K
∗ ˙ 1. It follows that �� = �∗ + �
∗ satis�es

1>�� = 1 and D1=2K�� ˙ 1: (3.8)

Let ��= �∗+ �u, let �1 = inf{� | �� ∈�} and let �2 = sup{� | �� ∈�}. Then �1¡0¡�2.
Further, it follows from (3.6) and (3.8) that for any �16�6�2,

d(1; ��) = d(1; �∗) = inf
�∈�

d(1; �)

since
d
d�
d(1; ��) =

3∑
i=1
�i{K��}i2
∗i ˙ 1>
∗ = 0:

In addition,

M (�∗) =
�2M (��1 )
|�1|+ �2 +

|�1|M (��2 )
|�1|+ �2 :

Hence either {M (��1 )}12¡0 or {M (��2 )}12¡0 since {M (�∗)}12¡0 because of the
assumption A(�∗) = {1}. Hence either ��1 or ��2 (or both) also satisfy A(��i) = {1}
and so is (are) the required design supported on just two points. The proof when
A(�∗) = {−1} is entirely similar and hence is omitted.

Theorem 3.2. Let � be a design supported on three points x1; x2 and x3 with −16x1¡
x2¡x361 and the mass at xi is �i; i = 1; 2; 3. De�ne

n1 =
�1�3(x3 − x1)− �1�2(x2 − x1)− �2�3(x3 − x2)

x3�3 − x2�2 ;

n2 =
�1�3(x3 − x1)(−x1x3) + �1�2(x2 − x1)(x1x2) + �2�3(x3 − x2)(x2x3)

x3�3 − x2�2 ; (3.9)

�∗ =
{
�2�3(x3 − x2)
x3�3 − x2�2 (

√
|n2|+ x2x3

√
|n1|)

}/
{n2
√

|n1| − n1
√
|n2|}:

(i) Suppose x260. Among all designs � satisfying A(�) = {−1; 1}, there is either
an optimal one given by (3.2), or if n1n2¡0 and �∗ satis�es

0¡�∗¡�max = x3�3=(x3�3 − x1�1); (3.10)

the optimal design � on {x1; x2; x3} has mass given by1
�1 = �∗; �2 =

x3�3 − �∗(x3�3 − x1�1)
x3�3 − x2�2 and �3 =

−x2�2 + �∗(x2�2 − x1�1)
x3�3 − x2�2 :

(3.11)

(ii) Suppose x2¿0. De�ne z3 =−x1, z2 =−x2, z1 =−x3, �̃3 =�1, �̃2 =�2 and �̃1 =�3.
The optimal design has mass given by

�̃1 = �
∗; �̃2 =

z3�̃3 − �∗(z3�̃3 − z1�̃1)
z3�̃3 − z2�̃2

and �̃3 =
−z2�̃2 + �∗(z2�̃2 − z1�̃1)

z3�̃3 − z2�̃2
:
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Proof. We prove only the case when x260 since the case for 06x2 is easily proved
by a similar argument. We show among all designs satisfying A(�) = {−1; 1}, there is
either an optimal one supported on only 2 points (and hence given by (3.10)), or if
n1n2¡0 and �∗ satis�es (3.10), the optimal design is given by (3.11).
Since A(�) = {−1; 1}, it must be that {M (�)}12 = 0. Thus we have �1 + �2 + �3 = 1

and �1x1�1 + �2x2�2 + �3x3�3 = 0. Since �3x3 − �2x2¿0, these two equations have the
general solution given in (3.11). Let

c1 = �2�3(x3 − x2)={x3�3 − x2�2} and c2 =−x2x3c1:
Then a direct calculation yields {M (�)}ii= ci+�ni, i=1; 2; where n1 and n2 are given
by (3.9). If (M (�))ii, i=1; 2 are non-zero, let s(�)=d(1; �)=1=(c1+�n1)+1(c2+�n2).
If n1; n2¿0 and both non-zero, it is clear that s(�) is strictly monotone on the region
� and so s(�) does not assume its maximum on �. If n1 = n2 = 0, s(�) is constant in
� and either the choice � = 0 or

� = �max = x3�3=(x3�3 − x1�1)¿0
yields an optimal design among two-point designs, i.e. {x2; x3} if � = 0 or {x1; x3} if
� = �max. (In that case the computational scheme will have already found an optimal
design.)
Thus assume n1n2¡0. Di�erentiating s(�), we have s′(�)=−n1=(c1+�n1)2−n2=(c2+

�n2)2 and the minimum of s(�) on �, if it exists, satis�es s′(�) = 0. Since the design
is supported on three points and ci + �ni¿0, i= 1; 2; this is equivalent to

√|n1|(c2 +
�n2) =

√|n2|(c1 + �n1). The solution �∗ to s′(�) = 0 is given in (3.10).

4. Examples

We apply the algorithm to construct several optimal minimax designs for the model
f>(x) = (1; x) on X = [− 1; 1] with various e�ciency functions. These examples are
for illustrative purposes; in actual applications other functional forms for �(x) could
occur depending on the application.

Example 4.1. Suppose X = Y , �(x) = 4 + x − x2 and a G-optimal design is sought.
If we suppose a two-point optimal design � with support at x1; x2 exists, the as-

sumption that x1x2¡0 implies the mass at x2 is given by (3.2). A straightforward
computation shows the diagonal elements of M (�) are

m11 =
(4 + x1 − x21)(x22 − x2 − 4)

−4− x1 + x21 − x2 + x1x2 + x22
; m22 =

−x1x2(4 + x1 − x21)(x22 − x2 − 4)
−4− x1 + x21 − x2 + x1x2 + x22

and

�d(x; �) =
(1− x1x2)(−4− x1 + x21 − x2 + x1x2 + x22)

−x1x2(4 + x1 − x21)(x22 − x2 − 4)
; x> = (x1; x2):

It is now easy to verify that on X , �d(�) is minimized when x∗1 =−0:868517 and x∗2 =1.
This is consistent with the result in Wong (1996), where a class of G-optimal designs
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was found for the same problem but with �(x) = 4 + x − cx2, c¿0. For each c inside
a certain interval, �∗ in (1.1) is identi�ed by a complicated expression, and so is the
optimal design. The algorithm here avoids the rather tedious algebra involved.

Example 4.2. Suppose X = Y , �(x) = 2 + Cos(3x) and a G-optimal design is sought.
A direct calculation yields n1=−1:14048, n2=0:528383, �max=0:5 and �=0:252782.

Since n1n2¡0, 0¡�6�max = 0:5, Step 2 of the algorithm is satis�ed and the optimal
design �∗ is supported on x1=−1; x3=1 and x2=−0:471961 with mass �∗2 =0:246396
at x2 and �∗3 = 0:500822 at 1, respectively.
The optimal design in Example 4.2 is not unique. It can be checked that the design

which puts mass 0:500822 at −1; 0:246396 at 0:471961 and 0:252782 at 1 is also
optimal. Likewise, a symmetrized four-point design on ±1 and ±0:461961 with mass
at 1 equals to 0:376802 is also optimal. Examples where an optimal design is supported
on two points with the same sign are given in Wong (1993). Our last example assumes
X 6= Y .

Example 4.3. Suppose X =[−1; 1]; �(x)=2+x2 and an optimal minimax design over
the interval Y = [2; 4] is sought. Set y1 = 2; y2 = 4; z1 = −1; z2 = 1 and assume the
optimal design �∗ is supported on x1 and x2 (¿x1). We have by (2.1),

�∗2 =
√
�1(4− (−1))√

�1(4− (−1)) +
√
�2|4− (1)|

=
5
√
2 + x21

5
√
2 + x21 + 3

√
2 + x22

; �∗1 = 1− �∗2 :

It can be shown d(�∗) = d(4; �∗) for all x1 and x2 in X and is equal to

2048−384x1 + 832x21−192x31 + 24x41−640x2−200x21x2 + 320x22 + 25x21x2−120x32 + 15x42
15(2 + x21)(x2−x1)2(2 + x22)

:

It is straightforward to check that on X , this function is minimized at x∗1 =−1 and
x∗2 =1 so that �

∗
2 =

5
8 from above and �d(�∗)= 16

3 . The optimal design is thus supported
on 1 with mass 5

8 and on −1 with mass 3
8 .

5. Extensions to polynomial models of higher degrees

The problem of �nding numerically G-optimal designs for more complex models has
persisted because of lack of an e�cient algorithm. These algorithms are notoriously
di�cult to obtain because the criterion used here is ‘non-di�erentiable’ in Kiefer’s
terminology and requires use of sub-gradients, such as �∗ in (1.1). To our knowledge,
the above algorithm is the �rst one available that guarantees to �nd an optimal design
under a non-di�erentiable criterion in a few steps. Extensions of the algorithm for
use in more complex models are not available at this time but we provide here some
suggestions for �nding optimal designs for more complex models when the e�ciency
function is symmetric on [ − 1; 1]. This assumption, along with the convexity of the
function d(�), implies a symmetric optimal design always exists; see Example 4.2 and
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Table 1
Numerical G-optimal designs for the quadratic model with �(x) = exp(−cx2); support points are ± s and 0,
with p as its mass at 1 and q is the mass of �∗ at 1

c p q s

0.5 0.383652 0.383652 1
1.5 0.449816 0.449816 1
1.75 0.459748 0.461531 0.970303
2 0.467463 0.473896 0.946385
3.69868 0.450000 0.5 0.76573
4 0.44526 0.5 0.739223
8 0.418331 0.5 0.539124
16 0.404723 0.5 0.389176

the comments following it. Consequently, the support points of �∗ are symmetrical and
are at most of the form

±1 if p= 1;

0;±1 if p= 2;

{±a1; : : : ;±a(p−1)=2; : : : ;±1} if p= 3; 5; : : : ;

{0;±a1; : : : ;±a(p−2)=2; : : : ;±1} if p= 4; 6; : : : :

Here a1 could take the value 0 when p = 3; 5; : : : and �∗ can be chosen to be a
symmetric measure supported on, at most 2p+2 points of the form {±x1; : : : ;±xp+1}
with x1 possibly equals to 0. This observation can help us �nd the optimal design
by reducing the number of variables needed to consider in (1.1); see the numerical
examples to follow.
Our strategy for �nding optimal minimax designs for symmetric e�ciency functions

relies partly on the above observation and partly on heuristics. Empirical work suggests
that when there is mild heteroscedasticity in the model, the D- and G-optimal designs
frequently have the same set of support points; see Table 4:1 of Wong (1995). Thus
the �rst part of our strategy is to apply any known algorithm for generating a weighted
D-optimal designs (Pazman, 1986, Ch. 5) and afterwards, assume the G-optimal designs
are supported on the same set of points.
As an illustration, consider a bell-shaped e�ciency function �(x)=exp{−cx2}; c¿0,

and the quadratic model f>(x) = (1; x; x2) de�ned on [ − 1; 1]. If 06c61:5 (mild
heteroscedasticity for this problem), it is readily veri�ed that the G-optimal design
is symmetric and supported at 0;±1 with mass at 0 equals to 1=(1 + 2 exp(c)). The
corresponding �∗ is the same as the optimal design, implying A(�∗)={Support of �∗}.
If c¿1:5, the non-zero support points are no longer ±1 but tends toward zero as c
increases (Table 1). Furthermore, if c¿t (t ≈ 3:7), the variance function of the optimal
design is maximized only at ±1. Some numerical optimal designs are shown in Table
1. Their optimality can be veri�ed by plotting g�(x; �∗; �∗). The quantities in (1.1) are
�rst calculated by letting �∗=p�s+(1−2p)�0+p�−s+ and �∗=q�−1+(1−2q)�0+q�1,
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where �a is the point mass at a and, 0¡p; q¡1. Then if c¿1:5, the optimal design
is found by solving the set of equations:

g�(s; �∗; �∗) = g�(0; �∗; �∗) = 0

and

d
dx
g�(x; �∗; �∗)

∣∣∣∣
x=0
=

d
dx
g�(x; �∗; �∗)

∣∣∣∣
x=s
= 0;

if 06c61:5, the optimal design is given above.
Applications to polynomial models of higher degrees are possible. For example, if

we have a cubic model and �(x) = 2− x2, this strategy produces a symmetric optimal
design with positive support points at 1; 0:411431 with mass 0:323367 and 0:176633,
respectively. Likewise, if �(x) = 3 − x2, the symmetric optimal design has positive
support points at 1; 0:423258, with mass 0:292568 and 0:207432, respectively.
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